Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Environ Microbiol ; 26(3): e16599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459641

RESUMO

The occurrence of facultative endosymbionts has been studied in many commercially important crop pest aphids, but their occurrence and effects in non-commercial aphid species in natural populations have received less attention. We screened 437 aphid samples belonging to 106 aphid species for the eight most common facultative aphid endosymbionts. We found one or more facultative endosymbionts in 53% (56 of 106) of the species investigated. This likely underestimates the situation in the field because facultative endosymbionts are often present in only some colonies of an aphid species. Oligophagous aphid species carried facultative endosymbionts significantly more often than monophagous species. We did not find a significant correlation between ant tending and facultative endosymbiont presence. In conclusion, we found that facultative endosymbionts are common among aphid populations. This study is, to our knowledge, the first of its kind in the Netherlands and provides a basis for future research in this field. For instance, it is still unknown in what way many of these endosymbionts affect their hosts, which is important for determining the importance of facultative endosymbionts to community dynamics.


Assuntos
Afídeos , Animais , Simbiose
2.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460112

RESUMO

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micoses , Estudo de Associação Genômica Ampla , Arabidopsis/microbiologia , Pressão Osmótica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética
3.
Poult Sci ; 103(4): 103481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340663

RESUMO

Black soldier fly (BSF) larvae have gained significant attention as ingredients for poultry feed to improve value chain circularity and sustainability. Black soldier fly larvae contain bioactive compounds which can potentially improve broiler health and thereby performance. However, the functionality of bioactive compounds likely depends on how larvae are processed prior to feeding and to which extent larvae products are included in the diet. This may explain the variable results reported in literature on broiler performance and carcass characteristics when feeding them different types of BSF larvae products at different inclusion levels. Therefore, the present research aimed to investigate the effects of different BSF larvae products and inclusion levels in diets on performance and carcass characteristics of slow-growing broilers. The experiment started with 1,728 one-day-old slow-growing male broilers (Hubbard JA757). Nine dietary treatments were used, each replicated eight times. One group of broilers was given a control diet. The following BSF larvae products were investigated: live larvae, a combination of BSF larvae meal and oil mimicking the nutritional composition of the live larvae, and BSF larvae meal and oil separately. All insect products were tested at two inclusion levels. All diet programs were nutritionally comparable (isoenergetic and based on balanced levels of digestible essential amino acids). During the 7-wk trial, several performance parameters and carcass characteristics were measured. The results show that comparable or better broiler performance was achieved with the inclusion of BSF larvae products in the diets compared to the control. Based on the feed conversion ratio (FCR), the unprocessed larvae product and the highest inclusion level led to the most favorable results. Carcass characteristics remained unchanged when BSF larvae products were used in the diets compared to the control group, indicating favorable production output. The BSF larvae products investigated seem suitable feed ingredients for broilers at the current levels tested, generating performance benefits.


Assuntos
Galinhas , Dípteros , Masculino , Animais , Larva/química , Galinhas/metabolismo , Ração Animal/análise , Dípteros/química , Dieta/veterinária
4.
Trends Plant Sci ; 29(1): 32-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37563025

RESUMO

There is overwhelming evidence that synthetic pesticides have a negative impact on the environment and human health, emphasizing the need for novel and sustainable methods for plant protection. A growing body of literature reports that plants interact through substrate-borne vibrations with arthropod pests and mutualistic arthropods that provide biological control and pollination services. Here, we propose a new theoretical framework that integrates insights from biological control, the ecology of fear, and plant-borne vibrations, to address plant-insect interactions and explore new, sustainable opportunities to improve plant health and productivity.


Assuntos
Artrópodes , Praguicidas , Animais , Humanos , Insetos , Plantas , Ecologia
5.
Insect Sci ; 31(2): 469-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105530

RESUMO

The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.


Assuntos
Lepidópteros , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/metabolismo , Insetos/fisiologia , Larva/metabolismo , Sensilas/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
6.
Curr Opin Insect Sci ; 61: 101151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097038

RESUMO

Honeydew is the excretion of plant-feeding hemipterans and it is one of the most abundant source of carbohydrates for parasitoids and predators in agroecosystems. Being so abundant, honeydew mediates direct and indirect interactions that affect biological control. We describe these interactions and identify honeydew-management strategies to reduce pest pressure. First, the presence of nondamaging honeydew producers in cover crops and hedges increases the efficacy of parasitoids and predators. Second, breaking the mutualism between ants and honeydew-producing pests with alternative sugar sources promotes biological control of these pests. Third, we propose to explore honeydew volatiles to attract biological control agents and repel pests, as well as to induce plant defenses. Finally, we urge reducing the use of systemic pesticides that contaminate honeydew and negatively affect biological control agents that feed on it. Overall, we propose that honeydew management is integrated in pest management programs to contribute to sustainable agriculture.


Assuntos
Formigas , Agentes de Controle Biológico , Animais , Controle de Pragas , Simbiose
7.
Proc Natl Acad Sci U S A ; 120(43): e2304826120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844251

RESUMO

Future food farming technology faces challenges that must integrate the core goal of keeping the global temperature increase within 1.5 °C without reducing food security and nutrition. Here, we show that boosting the production of insects and earthworms based on food waste and livestock manure to provide food and feed in China will greatly contribute to meeting the country's food security and carbon neutrality pledges. By substituting domestic products with mini-livestock (defined as earthworms and insects produced for food or feed) protein and utilizing the recovered land for bioenergy production plus carbon capture and storage, China's agricultural sector could become carbon-neutral and reduce feed protein imports to near zero. This structural change may lead to reducing greenhouse gas emissions by 2,350 Tg CO2eq per year globally when both domestic and imported products are substituted. Overall, the success of mini-livestock protein production in achieving carbon neutrality and food security for China and its major trading partners depends on how the substitution strategies will be implemented and how the recovered agricultural land will be managed, e.g., free use for afforestation and bioenergy or by restricting this land to food crop use. Using China as an example, this study also demonstrates the potential of mini-livestock for decreasing the environmental burden of food production in general.


Assuntos
Gado , Eliminação de Resíduos , Animais , Efeito Estufa , Alimentos , Carbono , Biodiversidade , Temperatura , Agricultura , Segurança Alimentar , China
9.
J Pest Sci (2004) ; : 1-17, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37360044

RESUMO

Root herbivores pose a major threat to agricultural crops. They are difficult to control and their damage often goes unnoticed until the larvae reach their most devastating late instar stages. Crop diversification can reduce pest pressure, generally without compromising yield. We studied how different diversified cropping systems affected the oviposition and abundance of the specialist cabbage root fly Delia radicum, the most important root herbivore in Brassica crops. The cropping systems included a monoculture, pixel cropping, and four variations of strip cropping with varying intra- and interspecific crop diversity, fertilization and spatial configuration. Furthermore, we assessed whether there was a link between D. radicum and other macroinvertebrates associated with the same plants. Cabbage root fly oviposition was higher in strip cropping designs compared to the monoculture and was highest in the most diversified strip cropping design. Despite the large number of eggs, there were no consistent differences in the number of larvae and pupae between the cropping systems, indicative of high mortality of D. radicum eggs and early instars especially in the strip cropping designs. D. radicum larval and pupal abundance positively correlated with soil-dwelling predators and detritivores and negatively correlated with other belowground herbivores. We found no correlations between the presence of aboveground insect herbivores and the number of D. radicum on the roots. Our findings indicate that root herbivore presence is determined by a complex interplay of many factors, spatial configuration of host plants, and other organisms residing near the roots. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01629-1.

10.
J Invertebr Pathol ; 198: 107934, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169329

RESUMO

Temperature is an important abiotic factor influencing the survival and fitness of pathogens as well as their hosts. We investigated the effect of three temperatures (18 °C, 27 °C and 37 °C) on survival and performance of black soldier fly larvae (BSFL), Hermetia illucens L., upon infection by an entomopathogenic Gram-negative bacterium, Pseudomonas protegens Pf-5. The effect of different temperatures on pathogen fitness was investigated both in vivo and in vitro. Pathogen performance under exposure to the insect antimicrobial peptide cecropin was investigated at the three temperatures using radial-diffusion plate assays. Higher rearing temperatures resulted in higher larval survival, increased larval weight, and higher inhibitory activity of cecropin against P. protegens Pf-5. At higher temperature, bacterial growth, both in vivo and in vitro, was reduced, resulting in increased BSFL survival. These observations collectively indicate the important effect of rearing temperature on host-pathogen interactions and the possibility to apply temperature treatment in reducing entomopathogen effects in BSFL.


Assuntos
Cecropinas , Dípteros , Animais , Temperatura , Larva , Interações Hospedeiro-Patógeno
11.
Front Cell Neurosci ; 17: 1155405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252192

RESUMO

Sensory processes have often been argued to play a central role in the selection of ecological niches and in the formation of new species. Butterflies are among the best studied animal groups with regards to their evolutionary and behavioral ecology and thereby offer an attractive system to investigate the role of chemosensory genes in sympatric speciation. We focus on two Pieris butterflies with overlapping host-plant ranges: P. brassicae and P. rapae. Host-plant choice in lepidopterans is largely based on their olfactory and gustatory senses. Although the chemosensory responses of the two species have been well characterized at the behavioral and physiological levels, little is known about their chemoreceptor genes. Here, we compared the chemosensory genes of P. brassicae and P. rapae to investigate whether differences in these genes might have contributed to their evolutionary separation. We identified a total of 130 and 122 chemoreceptor genes in the P. brassicae genome and antennal transcriptome, respectively. Similarly, 133 and 124 chemoreceptors were identified in the P. rapae genome and antennal transcriptome. We found some chemoreceptors being differentially expressed in the antennal transcriptomes of the two species. The motifs and gene structures of chemoreceptors were compared between the two species. We show that paralogs share conserved motifs and orthologs have similar gene structures. Our study therefore found surprisingly few differences in the numbers, sequence identities and gene structures between the two species, indicating that the ecological differences between these two butterflies might be more related to a quantitative shift in the expression of orthologous genes than to the evolution of novel receptors as has been found in other insects. Our molecular data supplement the wealth of behavioral and ecological studies on these two species and will thereby help to better understand the role of chemoreceptor genes in the evolution of lepidopterans.

12.
PLoS Pathog ; 19(3): e1011262, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947551

RESUMO

Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.


Assuntos
Borboletas , Vespas , Animais , Odorantes , Larva , Borboletas/parasitologia , Vespas/parasitologia , Interações Hospedeiro-Parasita
13.
Pest Manag Sci ; 79(5): 1820-1828, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36641545

RESUMO

BACKGROUND: The use of light-emitting diode (LED) lights in horticulture allows growers to adjust the light spectrum to optimize crop production and quality. However, changes in light quality can also influence plant-arthropod interactions, with possible consequences for pest management. The addition of far-red light has been shown to interfere with plant immunity, thereby increasing plant susceptibility to biotic stress and increasing pest performance. Far-red light also influences plant emission of volatile organic compounds (VOCs) and might thus influence tritrophic interactions with biological control agents. We investigated how far-red light influences the VOC-mediated attraction of the predatory mite Phytoseiulus persimilis to tomato plants infested with Tetranychus urticae, and its ability to control T. urticae populations. RESULTS: Far-red light significantly influences herbivore-induced VOC emissions of tomato plants, characterized by a change in relative abundance of terpenoids, but this did not influence the attraction of P. persimilis to herbivore-induced plants. Supplemental far-red light led to an increased population growth of T. urticae and increased numbers of P. persimilis. This resulted in a stronger suppression of T. urticae populations under supplemental far-red light, to similar T. urticae numbers as in control conditions without supplemental far-red light. CONCLUSION: We conclude that supplemental far-red light can change herbivore-induced VOC emissions but does not interfere with the attraction of the predator P. persimilis. Moreover, far-red light stimulates biological control of spider mites in glasshouse tomatoes due to increased population build-up of the biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Solanum lycopersicum , Tetranychidae , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Plantas , Comportamento Predatório
14.
Plant Cell Environ ; 46(3): 931-945, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36514238

RESUMO

Soil composition and herbivory are two environmental factors that can affect plant traits including flower traits, thus potentially affecting plant-pollinator interactions. Importantly, soil composition and herbivory may interact in these effects, with consequences for plant fitness. We assessed the main effects of aboveground insect herbivory and soil amendment with exuviae of three different insect species on visual and olfactory traits of Brassica nigra plants, including interactive effects. We combined various methodological approaches including gas chromatography/mass spectrometry, spectroscopy and machine learning to evaluate changes in flower morphology, colour and the emission of volatile organic compounds (VOCs). Soil amended with insect exuviae increased the total number of flowers per plant and VOC emission, whereas herbivory reduced petal area and VOC emission. Soil amendment and herbivory interacted in their effect on the floral reflectance spectrum of the base part of petals and the emission of 10 VOCs. These findings demonstrate the effects of insect exuviae as soil amendment on plant traits involved in reproduction, with a potential for enhanced reproductive success by increasing the strength of signals attracting pollinators and by mitigating the negative effects of herbivory.


Assuntos
Solo , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Polinização , Flores/anatomia & histologia , Insetos , Herbivoria
15.
Front Plant Sci ; 14: 1322719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235197

RESUMO

Biological control using plant-beneficial fungi has gained considerable interest as a sustainable method for pest management, by priming the plant for enhanced defense against pathogens and insect herbivores. However, despite promising outcomes, little is known about how different fungal strains mediate these beneficial effects. In this study, we evaluated whether inoculation of tomato seeds with the plant-beneficial fungi Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and Trichoderma harzianum T22 affected the plant's volatile organic compound (VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an emerging pest species in NW-European tomato cultivation, and the related zoophytophagous biocontrol agent Macrolophus pygmaeus. Results indicated that fungal inoculation did not significantly alter the VOC composition of tomato plants. However, in a two-choice cage assay where female insects were given the option to select between control plants and fungus-inoculated plants, N. tenuis preferred control plants over M. brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested chose the control treatment. In all other combinations tested, no significant differences were found for none of the insects. We conclude that inoculation of tomato with plant-beneficial fungi had limited effects on plant volatile composition and host-choice behavior of insects. However, the observation that N. tenuis was deterred from the crop when inoculated with M. brunneum and attracted to non-inoculated plants may provide new opportunities for future biocontrol based on a push-pull strategy.

16.
Evol Appl ; 15(10): 1580-1593, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330308

RESUMO

Biological control (biocontrol) of crop pests is a sustainable alternative to the use of biodiversity and organismal health-harming chemical pesticides. Aphids can be biologically controlled with parasitoid wasps; however, variable results of parasitoid-based aphid biocontrol in greenhouses are reported. Aphids may display genetically encoded (endogenous) defences that increase aphid resistance against parasitoids as under high parasitoid pressure there will be selection for parasitoid-resistant aphids, potentially affecting the success of parasitoid-based aphid biocontrol in greenhouses. Additionally, aphids may carry secondary bacterial endosymbionts that protect them against parasitoids. We studied whether there is variation in either of these heritable elements in aphids in greenhouses of sweet pepper, an agro-economically important crop in the Netherlands that is prone to aphid pests and where pest management heavily relies on biocontrol. We sampled aphid populations in organic (biocontrol only) and conventional (biocontrol and pesticides) sweet pepper greenhouses in the Netherlands during the 2019 crop growth season. We assessed the aphid microbiome through both diagnostic PCR and 16S rRNA sequencing and did not detect any secondary endosymbionts in the two most encountered aphid species, Myzus persicae and Aulacorthum solani. We also compared multiple aphid lines collected from different greenhouses for variation in levels of endogenous-based resistance against the parasitoids commonly used as biocontrol agents. We found no differences in the levels of endogenous-based resistance between different aphid lines. This study does not support the hypothesis that protective endosymbionts or the presence of endogenous resistant aphid lines affects the success of parasitoid-based biocontrol of aphids in Dutch greenhouses. Future investigations will need to address what is causing the variable successes of aphid biocontrol and what (biological and management-related) lessons can be learned for aphid control in other crops, and biocontrol in general.

17.
Am J Clin Nutr ; 116(4): 1146-1156, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36026477

RESUMO

BACKGROUND: Edible insects are a novel source of animal protein. Moreover, edible insects contain iron concentrations similar to meat, potentially making them a valuable iron source for human consumers. Yet, it is unknown to what extent iron from insects is absorbed in humans. OBJECTIVES: In this exploratory study, we assessed fractional iron absorption from house crickets (Acheta domesticus) consumed with refined (low-phytate, noninhibiting) or nonrefined (high-phytate, inhibiting) meals. METHODS: Intrinsically [57Fe]-labeled and control crickets were reared. Six iron-balanced experimental meals were randomly administered crossover to 20 iron-depleted females (serum ferritin <25 µg/L; 18-30 y old), in 2 time-blocks of 3 consecutive days, 2 wk apart. Three meals consisted of refined maize flour porridge with either [57Fe]-labeled crickets, [58Fe]SO4 (reference meal), or unlabeled crickets plus [54Fe]SO4. The other 3 meals consisted of nonrefined maize flour porridge with the same respective additions. Blood samples were drawn to assess the 14-d isotope enrichment in erythrocytes, and meal-specific fractional iron absorption was calculated. In vitro digestion was used to explore possible explanations for unexpected findings. RESULTS: Mean fractional iron absorption from 57Fe-labeled house crickets with refined maize porridge (3.06%) and from refined maize porridge with unlabeled crickets (4.92%) was lower than from the reference meal (14.2%), with respective mean differences of -11.1% (95% CI: -12.6%, -9.68%) and -9.29% (95% CI: -10.8%, -7.77%). Iron absorption from all meals based on unrefined maize porridge was low (<3%), and did not differ for the 2 meals with crickets compared with the reference meal. In vitro digestion showed that chitin, chitosan, and calcium limited iron bioaccessibility to a large extent. CONCLUSIONS: Iron absorption from house crickets and fortified maize porridge with crickets is low, which may be explained by the presence of chitin and other inhibitors in the cricket biomass.This trial was registered at https://www.trialregister.nl as NL6821.


Assuntos
Quitosana , Gryllidae , Animais , Cálcio , Feminino , Ferritinas , Alimentos Fortificados , Humanos , Absorção Intestinal , Ferro , Isótopos , Ácido Fítico , Zea mays
18.
Curr Opin Plant Biol ; 68: 102242, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696775

RESUMO

Rapid systemic signals travel within the first seconds and minutes after herbivore infestation to mount defense responses in distal tissues. Recent studies have revealed that wound-induced hydraulic pressure changes play an important role in systemic electrical signaling and subsequent calcium and reactive oxygen species waves. These insights raise new questions about signal specificity, the role of insect feeding guild and feeding style and the impact on longer term plant defenses. Here, we integrate the current molecular understanding of wound-induced rapid systemic signaling in the framework of insect-plant interactions.


Assuntos
Herbivoria , Plantas , Animais , Herbivoria/fisiologia , Insetos , Espécies Reativas de Oxigênio
19.
New Phytol ; 235(6): 2378-2392, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717563

RESUMO

Plants face attackers aboveground and belowground. Insect root herbivores can lead to severe crop losses, yet the underlying transcriptomic responses have rarely been studied. We studied the dynamics of the transcriptomic response of Brussels sprouts (Brassica oleracea var. gemmifera) primary roots to feeding damage by cabbage root fly larvae (Delia radicum), alone or in combination with aboveground herbivory by cabbage aphids (Brevicoryne brassicae) or diamondback moth caterpillars (Plutella xylostella). This was supplemented with analyses of phytohormones and the main classes of secondary metabolites; aromatic, indole and aliphatic glucosinolates. Root herbivory leads to major transcriptomic rearrangement that is modulated by aboveground feeding caterpillars, but not aphids, through priming soon after root feeding starts. The root herbivore downregulates aliphatic glucosinolates. Knocking out aliphatic glucosinolate biosynthesis with CRISPR-Cas9 results in enhanced performance of the specialist root herbivore, indicating that the herbivore downregulates an effective defence. This study advances our understanding of how plants cope with root herbivory and highlights several novel aspects of insect-plant interactions for future research. Further, our findings may help breeders develop a sustainable solution to a devastating root pest.


Assuntos
Brassica , Mariposas , Animais , Brassica/genética , Brassica/metabolismo , Glucosinolatos/metabolismo , Herbivoria/fisiologia , Insetos/metabolismo , Larva/fisiologia , Mariposas/fisiologia , Transcriptoma/genética
20.
Biol Open ; 11(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502829

RESUMO

The COVID-19 pandemic has illustrated the need for the development of fast and reliable testing methods for novel, zoonotic, viral diseases in both humans and animals. Pathologies lead to detectable changes in the volatile organic compound (VOC) profile of animals, which can be monitored, thus allowing the development of a rapid VOC-based test. In the current study, we successfully trained honeybees (Apis mellifera) to identify SARS-CoV-2 infected minks (Neovison vison) thanks to Pavlovian conditioning protocols. The bees can be quickly conditioned to respond specifically to infected mink's odours and could therefore be part of a wider SARS-CoV-2 diagnostic system. We tested two different training protocols to evaluate their performance in terms of learning rate, accuracy and memory retention. We designed a non-invasive rapid test in which multiple bees are tested in parallel on the same samples. This provided reliable results regarding a subject's health status. Using the data from the training experiments, we simulated a diagnostic evaluation trial to predict the potential efficacy of our diagnostic test, which yielded a diagnostic sensitivity of 92% and specificity of 86%. We suggest that a honeybee-based diagnostics can offer a reliable and rapid test that provides a readily available, low-input addition to the currently available testing methods. A honeybee-based diagnostic test might be particularly relevant for remote and developing communities that lack the resources and infrastructure required for mainstream testing methods.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Abelhas , COVID-19/diagnóstico , Humanos , Aprendizagem , Odorantes , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...